Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 927: 172304, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604357

RESUMEN

Hyperthermophilic composting, characterized by temperatures equal to or exceeding 75 °C, offers superior compost maturity and performance. Inoculation with thermophilic bacteria presents a viable approach to achieving hyperthermophilic composting. This study investigates the effects of inoculating thermophilic bacteria, isolated at different temperatures (50 °C, 60 °C, and 70 °C) into compost on maturity, gaseous emissions, and microbial community dynamics during co-composting. Results indicate that the thermophilic bacteria inoculation treatments exhibited peak temperature on Day 3, with the maximum temperature of 75 °C reached two days earlier than the control treatment. Furthermore, these treatments demonstrated increased bacterial richness and diversity, along with elevated relative abundances of Firmicutes and Proteobacteria. They also fostered mutualistic correlations among microbial species, enhancing network connectivity and complexity, thereby facilitating lignocellulose degradation. Specifically, inoculation with thermophilic bacteria at 60 °C increased the relative abundance of Thermobifida and unclassified-f-Thermomonosporaceae (Actinobacteriota), whereas Bacillus, a thermophilic bacterium, was enriched in the 70 °C inoculation treatment. Consequently, the thermophilic bacteria at 60 °C and 70 °C enhanced maturity by 36 %-50 % and reduced NH3 emissions by 1.08 %-27.50 % through the proliferation of thermophilic heterotrophic ammonia-oxidizing bacteria (Corynebacterium). Moreover, all inoculation treatments decreased CH4 emissions by 6 %-27 % through the enrichment of methanotrophic bacteria (Methylococcaceae) and reduced H2S, Me2S, and Me2SS emissions by 1 %-25 %, 47 %-63 %, and 15 %-53 %, respectively. However, the inoculation treatments led to increased N2O emissions through enhanced denitrification, as evidenced by the enrichment of Truepera and Pusillimonas. Overall, thermophilic bacteria inoculation promoted bacteria associated with compost maturity while attenuating the relationship between core bacteria and gaseous emissions during composting.


Asunto(s)
Bacterias , Compostaje , Microbiota , Microbiología del Suelo , Compostaje/métodos , Microbiota/fisiología , Calor , Contaminantes Atmosféricos/análisis
2.
Bioresour Technol ; 393: 130126, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38036150

RESUMEN

To investigate the conversion of carbon and nitrogen organic matter to humus mediated by mineral material additives through biotic and abiotic pathways, three chicken manure composting experiments were conducted using calcium superphosphate (CS) and fly ash (FA). Results showed that CS and FA promoted carbon and nitrogen organic degradation and improved compost maturity. The ratio of humic acid-like to fulvic acid-like substances for FA (30) was significantly higher than for control (18) and CS (13). Excitation-emission-matrix spectra and parallel factor analysis identified a higher transformation of protein-like components into humic-like components in FA. Network analysis showed that CS improved compost maturity by promoting the rapid conversion of humus precursors to humus, while FA increased the richness and diversity of the microbial community, such as Chloroflexi, the unique phylum in FA. Overall, CS and FA facilitated the humification process through abiotic and biotic pathways, and FA had better humification performance.


Asunto(s)
Compostaje , Suelo , Nitrógeno/análisis , Carbono , Sustancias Húmicas/análisis , Estiércol , Minerales
3.
Waste Manag ; 171: 502-511, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37806158

RESUMEN

The phytotoxicity of the compost aqueous extracts determines the maturity. To improve the accuracy of compost maturity evaluation using the seed germination index (GI) method, different extraction methods (different moisture content and extraction ratio) were designed to obtain samples with various phytotoxic level. This study analyzed the effects of different extraction condition of compost samples on GI, and established the relationship between phytotoxicity and GI. The results showed that the moisture content and extraction ratio of the compost significantly affected the GI. The extraction ratio for the compost with 60-70 % moisture content was 1:10 (ratio of compost mass to extract volume). However, commercial compost, which must have a moisture content of 30-45 %, had an extraction ratio of 1:30 (w:v). More importantly, compost extraction based on dry weight, with a moisture content of 10-15 %, more effectively reflected the phytotoxicity variations during composting. In such cases, the extraction ratio should be at least 1:30 (w:v) but not exceed 1:50 (w:v). The relationship between phytotoxicity and GI showed that dissolved organic carbon and dissolved nitrogen were the most important factors influencing GI, followed by NH4+, electrical conductivity, K, volatile fatty acids, Zn, and Cu. For composts with a GI greater than 70 %, the dissolved organic carbon, dissolved nitrogen, and NH4+ concentrations were below 257, 164, and 73 mg/L, respectively. These findings provide an optimized standard method for compost maturity evaluation using GI and a concentration threshold of key phytotoxicity is proposed to achieve accurate control of compost maturity.

5.
J Environ Manage ; 345: 118651, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37499413

RESUMEN

Organic solid wastes (OSWs) are important reservoirs for antibiotic resistance genes (ARGs). Aerobic composting transforms OSWs into fertilizers. In this study, we investigated ARGs dynamics and their driving mechanisms in three OSW composts: pig manure (PM), kitchen waste (KC), and sewage sludge (SG). The dominant ARGs were different in each OSW, namely tetracycline, aminoglycoside, and macrolide resistance (PM); tetracyclines and aminoglycosides (KC); and sulfonamides (SG). ARGs abundance decreased in PM (71%) but increased in KC (5.9-fold) and SG (1.3-fold). Interestingly, the ARGs abundance was generally similar in all final composts, which was contributed to the similar bacterial community in final composts. In particular, sulfonamide and ß-lactam resistant genes removed (100%) in PM, while sulfonamide in KC (38-fold) and tetracycline in SG (5-fold) increased the most. Additionally, ARGs abundance rebounded during the maturation period in all treatments. Firmicutes, Proteobacteria, and Actinobacteria were the main ARGs hosts. Several persistent and high-risk genes included tetW, aadA, aadE, tetX, strB, tetA, mefA, intl1, and intl2. The structural equation models showed ARGs removal was mainly affected by physicochemical parameters and bacterial communities in PM, the ARGs enrichment in KC composting correlated with increased mobile genetic elements (MGEs). In general, thermophilic aerobic composting can inhibit the vertical gene transfer (VGT) of pig manure and horizontal gene transfer (HGT) of sludge, but it increases the HGT of kitchen waste, resulting in a dramatic increase of ARGs in KC compost. More attention should be paid to the ARGs risk of kitchen waste composting.


Asunto(s)
Antibacterianos , Compostaje , Animales , Porcinos , Antibacterianos/farmacología , Aguas del Alcantarillado , Tetraciclina , Estiércol/microbiología , Genes Bacterianos , Farmacorresistencia Bacteriana , Macrólidos , Bacterias , Sulfanilamida
6.
J Environ Manage ; 345: 118589, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37451027

RESUMEN

Although facultative heap composting is widely used in small and medium-sized livestock farms in China, there are few studies on greenhouse gas (GHG) and odor emissions from this composting system. This study focused on GHG and odor emissions from facultative heap composting of four types of livestock manure and revealed the relationship between the gaseous emissions and microbial communities. Results showed that pig, sheep, and cow manure reached high compost maturity (germination index (GI) > 70%), whereas chicken manure had higher phytotoxicity (GI = 0.02%) with higher electrical conductivity and a lower carbon/nitrogen ratio. The four manure types significantly differed in the total GHG emission, with the following pattern: pig manure (308 g CO2-eq·kg-1) > cow manure (146 g CO2-eq·kg-1) > chicken manure (136 g CO2-eq·kg-1) > sheep manure (95 g CO2-eq·kg-1). Bacterium with Fermentative, Methanotrophy and Nitrite respiratory functions (e.g. Pseudomonas and Lactobacillus) are enriched within the pile so that more than 90% of the GHGs are produced in the early (days 0-15) and late (days 36-49) composting periods. CO2 contributed more than 90% in the first 35 d, N2O contributed 40-75% in the late composting period, and CH4 contributed less than 8.0%. NH3 and H2S emissions from chicken and pig manure were 4.8 times those from sheep and cow manure. Overall, the gas emissions from facultative heap composting significantly differed among the four manure types due to the significant differences in their physicochemical properties and microbial communities.


Asunto(s)
Compostaje , Gases de Efecto Invernadero , Animales , Porcinos , Ovinos , Gases de Efecto Invernadero/análisis , Estiércol , Ganado , Dióxido de Carbono/análisis , Odorantes , Suelo/química , Gases , Nitrógeno/análisis , Pollos , Metano/análisis
7.
Int J Gen Med ; 16: 1541-1553, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37131869

RESUMEN

Background: Chronic lymphocytic leukemia (CLL) is a subtype of B-cell malignancy with high heterogeneity. Ferroptosis is a novel cell death induced by iron and lipid peroxidation and exhibits prognostic value in many cancers. Emerging studies on long non-coding RNAs (lncRNAs) and ferroptosis reveal the unique value in tumorigenesis. However, the prognostic value of ferroptosis-related lncRNAs (FRLs) remains unclear in CLL. Aim: We aimed to construct a FRLs risk model to predict prognosis and improve prognostic stratification for clinical practice. Methods: RNA-sequencing data and clinical characteristics of CLL patients were downloaded from the GEO database. Based on ferroptosis-related genes from FerrDb database, differentially expressed FRLs with prognostic significance were identified and used to generate the risk model. The capability of the risk model was assessed and evaluated. GO and KEGG analyses were performed to confirm biological roles and potential pathways. Results: A novel ferroptosis-related lncRNAs prognostic score (FPS) model containing six FRLs (PRKCQ, TRG.AS1, LNC00467, LNC01096, PCAT6 and SBF2.AS1) was identified. Patients in the training and validation cohort were evenly divided into high- and low-risk groups. Our results indicated that patients in the high-risk group had worse survival than those in the low-risk group. Functional enrichment analyses showed that the differently expressed genes (DEGs) between the two groups were enriched in the chemokine signaling pathway, hematopoietic cell lineage, T cell differentiation, TCR pathway and NF-κB pathway. Moreover, significant differences in immune cell infiltration were also observed. Surprisingly, FPS was proved to be an independent prognostic indicator for OS. Conclusion: We established and evaluated a novel prognostic risk model with 6 FRLs that could predict prognosis accurately and describe the distinct immune infiltration in CLL.

8.
Waste Manag ; 166: 104-114, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37167708

RESUMEN

Manure covered by organic materials during the storage has shown that it can effectively reduce emissions of greenhouse gases, but few studies have focused on the bacterial communities in manure or the coverage and mechanism responsible for reducing gas emissions. Therefore, this study investigated the impacts and mechanisms of cornstalk and sawdust coverings on greenhouse gas emissions during sheep manure storage. Sheep manure covered by organic material reduced nitrous oxide (N2O) emissions (42.27%-42.55%) relative to uncovered control through physical adsorption and biological transformation of Acinetobacter, Corynebacterium, Brachybacterium, Dietzia and Brevibacterium. Sheep manure covered by organic materials also increased methane (CH4) emissions (16.31%-43.07%) by increasing anaerobic zones of coverage. Overall, coverings reduced carbon dioxide equivalent (CO2eq) by 29.87%-33.60%. Coverings had less effect on the bacterial diversity and community of sheep manure, and the number of bacteria shared by sheep manure and the covering material increased with storage progress, indicating that these bacteria were transferred to the covering materials with gas emissions and moisture volatilization. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) images showed that functional group intensities of the covering materials increased and the fibrous structures became more disordered during the storage period. In general, it was safe to use organic materials as coverages during sheep manure storage, which was conducive to reducing greenhouse gas emissions.


Asunto(s)
Gases de Efecto Invernadero , Ovinos , Animales , Gases de Efecto Invernadero/análisis , Estiércol/análisis , Dióxido de Carbono/análisis , Metano/análisis , Óxido Nitroso/análisis
9.
Clin Exp Med ; 23(6): 2651-2662, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36738306

RESUMEN

Chronic lymphocytic leukemia (CLL) is a subtype of B-cell malignancy with high heterogeneity. XPO1 is highly expressed in many hematological malignancies, which predicts poor prognosis. In the study, we aimed to explore the prognostic role of XPO1 and the therapeutic effect of Selinexor, a selective inhibitor of nuclear export, which targets XPO1. We collected 200 CLL samples in our center to confirm XPO1 mRNA expression and analyzed the correlation between XPO1 expression and prognosis. Then, we decreased XPO1 expression with Selinexor to explore the effect of proliferation inhibition, cell cycle arrest, and apoptosis in CLL cell lines. RNA-Seq was performed to explore potential mechanisms. We analyzed XPO1 expression in a cohort of 150 treatment naive patients and another cohort of 50 relapsed and refractory (R/R) patients and found that XPO1 expression was upregulated in 76% of CLL patients compared with healthy donors. Survival analysis suggested that patients with increased XPO1 expression had inferior treatment-free survival (P = 0.022) and overall survival (P = 0.032). The inhibitor of XPO1, Selinexor, induced apoptosis in primary CLL cells. We showed the effects of Selinexor on proliferation inhibition, cell cycle arrest, and apoptosis in CLL cell lines with JVM3, MEC1, and ibrutinib-resistant (MR) cells via nuclear retention of cargo proteins of IκBα, p65, p50, and FOXO3a. Moreover, downregulation of the NF-κB and FOXO pathways was a common feature of the three CLL cell lines responding to Selinexor, indicating the potential application of XPO1 inhibitor even in the high-risk CLL cells. We identified XPO1 as an unfavorable prognostic factor for CLL patients and provided a rationale for further investigation of the clinically XPO1 targeted therapeutic strategy against CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/patología , Carioferinas/genética , Carioferinas/metabolismo , Pronóstico , Triazoles/farmacología , Triazoles/uso terapéutico , Apoptosis , Línea Celular Tumoral
10.
Sci Total Environ ; 861: 160611, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36460104

RESUMEN

To minimize environmental risks and the phytotoxic influence of organic materials on crop growth, it is necessary to test their phytotoxicity and maturity when they were used in farmland. However, the stress response of seed germination to chicken manure and cornstalks is not clear. This study used multi-omics analysis to investigate the inhibition mechanism of seed germination by chicken manure and cornstalk. Chicken manure caused destructive inhibition of seed germination with higher phytotoxicity (GI = 0). Cornstalk also had a low GI (8.81 %), while it mainly inhibited radicle growth (RL = 9.39 %) rather than seed germination (GR = 93.33 %). The response of radish seed germination to chicken manure and cornstalk phytotoxic stresses was accompanied by metabolic adjustments of storage substance accumulation, antioxidant enzyme activity change, phytohormone induction, and expression of specific proteins and gene regulation. Combined transcriptomic and proteomic analysis revealed that differential expression of 13,090 (5944 upregulated/7146 downregulated) and 3850 (2389 upregulated/1461 downregulated) genes (DEGs), and 1041 (82 upregulated/932 downregulated) and 575 (111 upregulated/464 downregulated) proteins (DEPs) at chicken manure and cornstalk treatment, respectively. Most down-regulated genes and proteins were involved in phenylpropanoid biosynthesis under chicken manure stress, which caused irreversible inhibition of seed germination. Down-regulation of phytohormone signal transduction-related genes under cornstalk stress resulted in inhibition of radicle growth, but the inhibitory stress was restorable. These findings provide new insight into the phytotoxicity of livestock manure and cornstalk on seed germination.


Asunto(s)
Pollos , Germinación , Animales , Germinación/fisiología , Estiércol , Semillas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteómica , Multiómica
11.
Ecotoxicol Environ Saf ; 247: 114251, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36327785

RESUMEN

Static facultative heap composting of animal manure is widely used in China, but there is almost no systematic research on the phytotoxicity of the produced compost. Here, we evaluated the phytotoxic variation in compost produced by facultative heap composting of four types of animal manure (chicken manure, pig manure, sheep manure, and cattle manure) using different plant seeds (cucumber, radish, Chinese cabbage, and oilseed rape) to determine germination index (GI). The key factors that affected GI values were identified, including the dynamics of the phytotoxicity and microbial community during heap composting. Sensitivity to toxicity differed depending on the type of plant seed used. Phytotoxicity during facultative heap composting, evaluated by the GI, was in the order: chicken manure (0-6.6 %) < pig manure (14.4-90.5 %) < sheep manure (46.0-93.0 %) < cattle manure (50.2-105.8 %). Network analysis showed that the volatile fatty acid (VFA) concentration was positively correlated with Firmicutes abundance, and NH4+-N was correlated with Actinobacteria, Proteobacteria, and Bacteroidetes. More bacteria were stimulated to participate in conversions of dissolved organic carbon, dissolved nitrogen, VFA, and ammonia-nitrogen (NH4+-N) in sheep manure heap composting than that in other manure. The GI was most affected by VFA in chicken manure and cattle manure heap composting, while NH4+-N was the main factor affecting the GI in pig manure and sheep manure compost. The dissolved carbon and nitrogen content and composition, as well as the core and proprietary microbial communities, were the primary factors that affected the succession of phytotoxic substances in facultative heap composting, which in turn affected GI values. In this study, the key pathways of livestock manure composting that affected GI and phytotoxicity were found and evaluated, which provided new insights and theoretical support for the safe use of organic fertilizer.


Asunto(s)
Alcaloides , Compostaje , Toxinas Biológicas , Porcinos , Bovinos , Ovinos , Animales , Estiércol , Ganado , Granjas , Germinación , Semillas , Nitrógeno , Pollos
12.
Front Immunol ; 13: 962000, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275721

RESUMEN

Background: Chronic lymphocytic leukemia (CLL) is the most common leukemia in the western world. Although the treatment landscape for CLL is rapidly evolving, there are still some patients who develop drug resistance or disease refractory. Ferroptosis is a type of lipid peroxidation-induced cell death and has been suggested to have prognostic value in several cancers. Our research aims to build a prognostic model to improve risk stratification in CLL patients and facilitate more accurate assessment for clinical management. Methods: The differentially expressed ferroptosis-related genes (FRGs) in CLL were filtered through univariate Cox regression analysis based on public databases. Least absolute shrinkage and selection operator (LASSO) Cox algorithms were performed to construct a prognostic risk model. CIBERSORT and single-sample gene set enrichment analysis (ssGSEA) were performed to estimate the immune infiltration score and immune-related pathways. A total of 36 CLL patients in our center were enrolled in this study as a validation cohort. Moreover, a nomogram model was established to predict the prognosis. Results: A total of 15 differentially expressed FRGs with prognostic significance were screened out. After minimizing the potential risk of overfitting, we constructed a novel ferroptosis-related prognostic score (FPS) model with nine FRGs (AKR1C3, BECN1, CAV1, CDKN2A, CXCL2, JDP2, SIRT1, SLC1A5, and SP1) and stratified patients into low- and high-risk groups. Kaplan-Meier analysis showed that patients with high FPS had worse overall survival (OS) (P<0.0001) and treatment-free survival (TFS) (P<0.0001). ROC curves evaluated the prognostic prediction ability of the FPS model. Additionally, the immune cell types and immune-related pathways were correlated with the risk scores in CLL patients. In the validation cohort, the results confirmed that the high-risk group was related to worse OS (P<0.0001), progress-free survival (PFS) (P=0.0140), and TFS (P=0.0072). In the multivariate analysis, only FPS (P=0.011) and CLL-IPI (P=0.010) were independent risk indicators for OS. Furthermore, we established a nomogram including FPS and CLL-IPI that could strongly and reliably predict individual prognosis. Conclusion: A novel FPS model can be used in CLL for prognostic prediction. The model index may also facilitate the development of new clinical ferroptosis-targeted therapies in patients with CLL.


Asunto(s)
Ferroptosis , Leucemia Linfocítica Crónica de Células B , Humanos , Pronóstico , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , Ferroptosis/genética , Sirtuina 1 , Estimación de Kaplan-Meier , Antígenos de Histocompatibilidad Menor , Sistema de Transporte de Aminoácidos ASC
13.
Sci Total Environ ; 836: 155727, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35523334

RESUMEN

This study investigated the effects of the combination of phosphogypsum with calcium oxide (PPG + CaO), superphosphate with calcium oxide (SSP + CaO) and zeolite (Zeolite) on composting maturity and heavy metal passivation in pig manure composting. The results showed that all treatments reached the maturity requirements and the phosphorus-containing additive treatments had higher final germination indices (GIs). Compared with CK, additive treatments enhanced the compost maturity by promoting volatile fatty acids (VFAs) decomposition (26.4%-30.5%) and formation of stable humus substances. All additive amendment treatments increased humic acid-like substances by over 20%, and the PPG + CaO treatment had the highest level of humus. Composting process reduced the bioavailability of Cu (49.2%), Cd (5.0%), Cr (54.3%), and Pb (26.6%). Correlation analysis found that the heavy mental passivation rate was significantly negatively correlated with the contents of VFAs and nitrogenous substances, and positively correlated with the pH, GI, humic acid content and the ratio of humic acid to fulvic acid (HA/FA). Therefore, the PPG + CaO treatment further increased the passivation rates of Cu (65.6%), Cd (21.7%), and Pb (48.7%) and decreased the mobilization of Zn by promoting maturity and humification during composting.


Asunto(s)
Compostaje , Metales Pesados , Zeolitas , Animales , Cadmio/análisis , Sustancias Húmicas/análisis , Plomo/análisis , Estiércol , Metales Pesados/análisis , Fosfatos/análisis , Suelo/química , Porcinos
14.
Environ Pollut ; 303: 119174, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35306090

RESUMEN

The high antibiotic resistance gene (ARGs) contents in livestock manure pose a potential risk to environment and human health. The heap composting with an ambient temperature and thermophilic composting are two methods for converting livestock manure into fertilizer. This study investigated the variations in ARGs and mobile genetic elements (MGEs) and revealed potential mechanisms for ARGs removal using the two composting methods. The ARGs abundance were enriched by 44-fold in heap composting, among them, the macrolide-resistance genes increased significantly. On the contrary, the ARGs were removed by 92% in thermophilic composting, among them, tetracycline-resistance genes decreased by 97%. The bacterial hosts of ARGs were associated with the variations of ARGs and MGEs. The tetO was correlated with the most diverse bacteria in heap composting, and Bacteroidetes was the major host bacteria. While tetT was correlated with the most diverse bacteria in thermophilic composting, and Proteobacteria was the major host bacteria. Structural equation models showed that the enrichment of ARGs in heap composting was mainly correlated with bacterial communities, whereas, the removal of ARGs in thermophilic composting was directly affect by MGEs. Composting temperature directly affected the variations in ARGs. Higher and lower temperatures significantly decreased and increased, respectively, ARGs and MGEs abundance levels.


Asunto(s)
Compostaje , Animales , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Humanos , Secuencias Repetitivas Esparcidas , Ganado , Estiércol/microbiología , Temperatura
15.
Sci Total Environ ; 824: 153958, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35183623

RESUMEN

The germination index (GI) is the best index for evaluating compost phytotoxicity and maturity. In order to improve GI and reduce phytotoxicity of chicken manure compost, superphosphate, biochar, and a microbial inoculum were added in this study. Maturity indices (pH, electrical conductivity, and GI), water-soluble ion, organic matter, humic acid, humic precursor contents, and the bacteria community were analyzed during the experiment. NH4+, volatile fatty acids, and humic acid strongly affected the GI, which increased as the humic acid content increased and the volatile fatty acid and NH4+ contents decreased. The three additives affected compost maturity differently. Adding biochar decreased microbial diversity and complexity, but improved the GI mainly by affecting abiotic factors. Adding the microbial inoculum increased biotic activity and promoted humus and precursor formation. Superphosphate activated core functional bacteria and increased bacterial diversity and complexity, and 16 genera and 2 phyla (Gemmatimonadota and Chloroflexi) were found only in this composting pile. Superphosphate markedly accelerated humification and decreased the salt (NH4+ and NO3-) and heavy metal ion (Cu2+, Cd2+, Cr3+) contents, forming stable substances to reduce the key phytotoxic matters, which in turn decreased the compost phytotoxicity and improved the GI. These results provide a new sight for promoting maturity by functional material regulation in composting.


Asunto(s)
Compostaje , Animales , Carbón Orgánico , Pollos , Difosfatos , Sustancias Húmicas , Estiércol , Suelo/química
16.
Sci Total Environ ; 824: 153755, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35151730

RESUMEN

The effects of exogenous additives (biochar, calcium magnesium phosphate fertilizer, and spent mushroom substrate) on humification process and heavy metal passivation during pig manure composting were investigated. The aerobic composting trial were carried out in 60 L reactors for 49 d. The calcium magnesium phosphate fertilizer, biochar, and spent mushroom substrate amendment treatments all accelerated the organic matter degradation and increased the temperature, decreased the volatile fatty acid content by 45%-49.0% and promoted humification of the compost (increasing the humic acid content and humus index). The biochar passivated Cu best, calcium magnesium phosphate fertilizer passivated Zn best (passivation rate 13.85%), and spent mushroom substrate passivated Cd, Cr, and Pb best (passivation rates 25.47%-47.91%). The additives amendment improved Cu, Zn, Cd, Cr, and Pb passivation performance by promoting composting humification process.


Asunto(s)
Agaricales , Compostaje , Metales Pesados , Animales , Cadmio , Carbón Orgánico , Fertilizantes , Plomo , Estiércol , Metales Pesados/análisis , Fosfatos , Suelo/química , Porcinos
17.
J Hazard Mater ; 421: 126809, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34388932

RESUMEN

The germination index (GI) was widely applied to evaluate the phytotoxicity of compost. This study investigated the key phytotoxicity factors affecting seed germination in compost by using aqueous extracts in seed germination tests. The relationship between water-soluble substances in compost and seed germination, and their association with the microbial community were identified. In this study, sheep manure (SM) composted along or with three carbon additives (mushroom substrate, MS; cornstalks, CS; garden substrate, GS) for 49 days and, during this time, changes in multiple physical-chemical parameters, carbon and nitrogen matters, germination indexes (GI) and the compost microbiome were monitored. The results showed that all additives decreased water-soluble total nitrogen (TN), ammonium nitrogen (NH4+-N) and low molecular weight organic acids, and significantly improved the seed germination indexes (seed germination rate, radical length and GI). The GI was correlated with water-soluble carbon degradation products (TOC, butyric acid, humic acid) and certain bacteria (Planifilum, Oceanobacillus, Ruminococcaceae_UCG_005 and Saccharomonospora). A structural equation model revealed that the main factors affecting seed germination were TOC (SM compost), acetic acid (SM+MS compost), humic acid (SM+CS compost), and pH (SM+GS compost). Low TOC and low molecular weight organic acids contents and higher humic acid content promoted GI. The research results could provide theoretical basis and measures for directional regulation of compost maturity.


Asunto(s)
Compostaje , Estiércol , Animales , Carbono , Germinación , Nitrógeno/análisis , Ovinos , Suelo
18.
Waste Manag ; 136: 238-243, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34700164

RESUMEN

The seed germination index (GI) is a widely used indicator of compost maturity and is a required index in many national standards. However, seeds of different species vary markedly in sensitivity to the biological toxicity of compost. Therefore, suitable seed selection is essential for evaluation of compost maturity with the GI. This study systematically investigated the germination percentage and root length for seeds of 17 species incubated in deionized water for 48 h at 25 °C in the dark. Based on the germination percentage, seeds of eight species (white radish, cucumber, fruit radish, edible rape, round radish, hybrid cucumber, cress, and Chinese cabbage) were selected for determination of the GI of chicken manure composted with differing proportions of tobacco powder and mushroom substrate. The GI of hybrid cucumber seeds showed a significant positive correlation with temperature and pH, and a significant negative correlation with E4/E6 ratio and ammonium-nitrogen content. The change in GI of hybrid cucumber seeds during composting and the GI value at the completion of composting were consistent with other maturity indicators. Among the tested seeds, the biological toxicity of the compost was best characterized by hybrid cucumber seeds, which thus represented a sensitive and reliable seed suitable for evaluation of compost maturity with the GI.


Asunto(s)
Compostaje , Germinación , Estiércol , Nitrógeno/análisis , Semillas/química , Suelo
19.
Chem Commun (Camb) ; 57(44): 5426-5429, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33949472

RESUMEN

An iron-catalyzed cascade reaction of C(sp3)-Se bond cross-coupling/C-N bond formation was developed. Various 5,13a-dihydro-6H,8H-benzo[5,6][1,3]selenazino[2,3-a]isoquinolin-8-one derivatives were synthesized under mild conditions starting from 1,2,3,4-tetrahydroisoquinolines and 2-hydroselenobenzoic acids. This protocol provides an economical approach for C(sp3)-Se bond formation.

20.
Front Oncol ; 11: 657208, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33937068

RESUMEN

PURPOSE: This retrospective study aimed to evaluate the dosimetric effects of a rectal insertion of Kushen Ningjiao on rectal protection using deformable dose accumulation and machine learning-based discriminative modelling. MATERIALS AND METHODS: Sixty-two patients with cervical cancer enrolled in a clinical trial, who received a Kushen Ningjiao injection of 20 g into their rectum for rectal protection via high-dose rate brachytherapy (HDR-BT, 6 Gy/f), were studied. The cumulative equivalent 2-Gy fractional rectal surface dose was deformably summed using an in-house-developed topography-preserved point-matching deformable image registration method. The cumulative three-dimensional (3D) dose was flattened and mapped to a two-dimensional (2D) plane to obtain the rectal surface dose map (RSDM). For analysis, the rectal dose (RD) was further subdivided as follows: whole, anterior, and posterior 3D-RD and 2D-RSDM. The dose-volume parameters (DVPs) were extracted from the 3D-RD, while the dose geometric parameters (DGPs) and textures were extracted from the 2D-RSDM. These features were fed into 192 classification models (built with 8 classifiers and 24 feature selection methods) for discriminating the dose distributions between pre-Kushen Ningjiao and pro-Kushen Ningjiao. RESULTS: The rectal insertion of Kushen Ningjiao dialated the rectum in the ambilateral direction, with the rectal column increased from pre-KN 15 cm3 to post-KN 18 cm3 (P < 0.001). The characteristics of DGPs accounted for the largest portions of the top-ranked features. The top-ranked dosimetric features extracted from the posterior rectum were more reliable indicators of the dosimetric effects/changes introduced by the rectal insertion of Kushen Ningjiao. A significant dosimetric impact was found on the dose-volume parameters D1.0cc-D2.5cc extracted on the posterior rectal wall. CONCLUSIONS: The rectal insertion of Kushen Ningjiao incurs significant dosimetric changes on the posterior rectal wall. Whether this effect is eventually translated into clinical gains requires further long-term follow-up and more clinical data for confirmation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...